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We compare results of high-resolution direct numerical simulation with equivalent 
two-point moment closure (the test-field model) for both randomly forced and 
spin-down problems. Our results indicate that moment closure is an adequate 
representation of observed spectra only if the random forcing is sufficiently strong 
to disrupt the dynamical tendency to form intermittent isolated vortices. For strong 
white-noise forcing near a lower-wavenumber cut-off, theory and simulation are in 
good agreement except in the dissipation range, with an enstrophy range less steep 
than the wavenumber to the minus fourth power. If the forcing is weak in amplitude, 
red noise, and at large wavenumbers, significant errors are made by the closure, 
particularly in the inverse-cascade range. For spin-down problems at large Reynolds 
numbers, the closure considerably overestimates enstrophy transfer to small scales, 
as well as energy transfer to large scales. We finally discuss the possibility that the 
closure errors are related to intermittency of various types. Intermittency can occur 
in either the inverse-cascade range (forced equilibrium) or the intermediate scales 
(spin-down), with isolated concentrations of vorticity forming the associated coherent 
structures, or it can occur in the dissipation range owing to the nonlinear amplification 
of variations in the cascade rate (Kraichnan 1967). 

1. Introduction and summary 
Several independent studies (Fornberg 1977 ; Basedevant et al. 1981 ; McWilliams 

1984a, 19843) suggest that high-Reynolds-number two-dimensional turbulence 
may - in certain circumstances - evolve in such a manner that there is little (or 
asymptotically no) enstrophy flux to small scales. This can occur due to the presence 
of dynamically stable, isolated vorticity concentrations (vortices ; see figure lo), either 
in spin-down flows, where they arise from random, Gaussian initial conditions, or in 
equilibrium flows with random forcing. In  these cases the flow departs substantially 
from Gaussianity. This condition is inhospitable to moment closures - such as the 
Test Field Model (TFM) of Kraichnan (1971). In order to gain insight into the 
magnitude of this problem, we compare direct numerical simulations (DNS) (spectral, 
mostly 256 x 256) with equivalent closure (TFM) for a variety of forcing functions, 
including spin-down (i.e. no forcing). The DNS solutions compared here have been 
described in McWilliams (1984). 

Our results for forced cases are that the closure may be quantitatively accurate 
only if the disruptive effects of random stirring are sufficiently strong to prevent the 
formation of coherent structures natural to two-dimensional turbulence. The 
disruptive effects are maximal for strong forcing near the low-wavenumber cut-off. 
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Our numerical study of such a forced system shows the DNS and TFM to be in close 
agreement over the entire enstrophy inertial range, but a significant discrepancy still 
exists in the dissipation range for high resolution and high Reynolds numbers. If, on 
the other hand, the forcing is at sufficiently high wavenumbers and is correspondingly 
weak so as to permit the possibility for an appreciable inverse cascade, the closure 
appears to considerably overestimate the flux in the inverse-cascade range. The actual 
cascade is considerably reduced by the emergence of isolated vortices, which cascade 
little energy to large scales. Such isolated vortices may be an expression of large-scale 
intermittency, as anticipated by Kraichnan (1975). Our results in this case may be 
compared to those of Basedevant et aE. (1981), who also find evidence for isolated 
vortices in their 128 x 128 simulations. These authors also report kinetic-energy 
spectra considerably steeper than wavenumber to the minus third power, and suggest 
a connection between the intermittency and spectral slope. Our TFM results suggest 
caution in this identification in that the TFM also has a similarly steep slope but, 
of course, no isolated structures. Hence this wavenumber span (1, 64) is too small to 
make accurate statements about asymptotic (i.e. infinite resolution and Reynolds 
number) spectral shapes. 

For freely decaying turbulence at large Reynolds numbers, the closures and 
numerical simulations remain in quantitative agreement only for a few large-eddy 
turnover times. This is the same as the time to build up high-order correlations 
(cumulants) in the flow. After this time, the actual flow evolves to a state which 
consists of isolated vortices which continue to coalesce intermittently. This state is 
characterized statistically as having quite high values of the vorticity kurtosis ( - 40), 
and steep spectra (significantly steeper than kP4 a t  high wavenumbers k). 

Our DNS results may be compared with recent calculations of Brachet t Sulem 
(1984), who have reported extremely high-resolution (1024 x 1024) calculations which 
show a consistency with a log-modified k-3 spectrum for decaying two-dimensional 
turbulence. Such high resolution was reached by the use of a sparse spectral method 
which assumed a certain symmetry that is preserved in the nonlinear evolution (i.e. 
vorticity is odd-symmetric about both midlines of the domain, x = R and y = IC). The 
initial state in this study consisted of only a few large-scale wavenumbers. The time 
interval studied reached only just past the point a t  which the enstrophy flux became 
maximum, which is a time before the coherent vortex component of the flow would 
become dominant. They further showed that lower resolutions were unable to resolve 
a ‘viscous instability’, which is vital for the development of a k-3 enstrophy range. 
Our DNS results are clearly below this limit. Without delving into the subtleties of 
large-wavenumber instabilities, we simply note that we here compare TFM and DNS 
for equivalent conditions (same resolution) ; thus any discrepancy between the two 
should be real, unless it were argued that the closure relies tacitly for its validity on 
the viscous instability. Their assumption of a particular spectrum symmetry is not 
germane to our differences, because we have verified that our DNS results are 
qualitatively unchanged with this symmetry. 

2. Description of calculations performed: DNS and TFM 

E(x, t )  satisfies 
We consider a flow confined in a periodic square box (with sides L) whose vorticity 

(k) = {J(@, E ) )  (4 - 4 k )  {El (k, t )  + W ,  t ) .  (1) at 
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Here J is the Jacobian, II. the stream function, k = lkl, and {a} (k) denotes the Fourier 
transform of a. The dissipation function u(k) is here taken as 

v (k )  = v,+v4k4.  ( 2 )  

w, t )  = f k ( k ) f t ( t ) ?  ( 3 )  

F(k, t )  is a random force whose form is a narrow pulse in wavenumber k .  The specific 
form used here is 

where uk(k) fk( -k) )  = A ( k - k , ) l .  (k,--k)4,1k2 = Aa(k , ,  k,, k )  

and 

Here ( ) means ensemble average. In  ( 3 )  our notation is that 

Vt( t ) f t ( t ’ ) )  = 7 exp (-7 1 t - W  

The method used to solve (1)-(3) is described briefly in McWilliams (1984a, 1984b) 
and will be described in more detail in Haidvogel (1985). These equations are solved 
collocatively , using complex exponentials as a basis. The box periodicity length 
L = 2%. This implies a lower wavenumber cut-off of kmin = 1 and a unit wavenumber 
discretization interval. For most of the cases considered below, the spatial grid 
resolution is 256, which implies that the largest wavenumber admitted is Em,, = 128. 
Time-stepping is by leapfrog, with a periodic Crank-Nicholson time-step to  suppress 
instability. 

The TFM closure equation with which the DNS is to be compared has been 
described by Kraichnan (1972) and by Herring et aE. (1974). We refer the reader to 
those papers for a detailed account of the energy-spectrum equations of motion. Here 
we simply recall that the TFM is of the eddy-sampled quasi-normal Markovian form 
(Orszag 1974), with the eddy-damping rate - which determines the relaxation of triple 
moments - prescribed as the rate at which a compressible test field exchanges 
excitation between its compressive and solenoidal components if convected by the 
actual velocity field. The theory contains a single arbitrary constant, whose value 
was previously determined by comparisons with DNS (Herring et a2. 1974). This 
constant (gz = 0.60) represents the efficiency of pressure scrambling in de-correlating 
triple moments. 

We remark that the DNS and TFM also differ in that the TFM is solved by 
approximating lattice sums by approximating integrals on the interval (Emin, k,,,). 
This difference may be significant if there is an appreciable amount of energy near 
kmin, a condition which we avoid in making comparisons between theory and 
simulations. 

Table 1 lists the runs investigated in this paper. The last of these is a spin-down 
problem in which the initial energy spectrum E ( k ,  0) is 

72 k 
TC 64 + k4’ 

E ( k ,  0 )  = -- (4 )  

where the amplitude is such that 

J d k E ( k , O )  = 4. 
0 
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Case u,, v4 kmin kmax ?/ A k, k2 

i (a)  0.10 5 . 0 0 0 ~ 1 0 - 7  1 64.0 i / ~ t -  a t  0.2oooo 1.19 4.877 
l(b) 0.10 5 . 0 0 0 ~  1 128.0 1/At - OD$ 0.100 1.19 4.877 
2 0.05 5 . 0 0 0 ~  1 128.0 0.231 0.00705 18.5 21.5 
3 - 0.00000 - 0.00 3 . 1 2 5 ~  lo-* 1 128.0 - 

7 At = 4 x 
$ At = 2 x 

for the DNS. 
for the DNS. 

TABLE 1 
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FIQURE 1. Energy spectrum E(k) for case 1 (a) (1  < k < 164) in the stationary state. 

3. Results 
We discuss first the equilibrium cases 1 and 2, considering first the low-wavenumber 

forcing cases 1 (a,  b). Comparison of the stationary-state value of energy spectra 
E(k) = 2nk <{a (k, t )  (5) (-k, t ) / k 2 ) / 2  is presented in figures 1 and 2 for cases 1 (a, b). 
For the low-resolution case l ( a )  the agreement between TFM (smooth) and time- 
averaged DNS (histogram) is quite satisfactory. This case has only an enstrophy- 
cascade range; the forcing is close to the lower-wavenumber cut-off, allowing no space 
for inverse cascade. The temporal fluctuations in total energy E(t) and total enstrophy 
V(t )  = +(I E(x, t )  12) (shown in figures 3 and 4) are quite violent; this is due to the 
white-noise driving F(k, t )  for this case. E(k)  is not quite as steep as kk4, although 
v,, + 0. The DNS considered here is quite similar - in its forcing and wavenumber 
range - to the calculation of Basedevant et al. (1981). The slope d In E(k))/d In k is 
rather close to -4  for both DNS and TFM. We attribute the excessive steepness 
relative to the closure theory's asymptotic form of kP3/(ln (k))g to the limited 
wavenumber range (1,64); we were unable with this range to demonstrate the 
(log-modified) k-3 asymptotic TFM range for any forcing and dissipation law. Our 
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1 10 10' 

FIGURE 2. Energy spectrum E(k) for case 1 (b)  (1 < k < 128) in the stationary state. 

point here is that it  appears difficult to discern between intermittency and limited 
resolution as to the cause of the steepening of the spectral slope. 

Spectral results for the high-resolution (1 < k < 128), low-wavenumber forcing 
(case 1 b)  are presented in figure 2. Here, good agreement is obtained in the enstrophy 
inertial range, but the TFM overpredicts the dissipation-range excitation by about 
a factor of 2. The trend of this overprediction is the same as in Herring et al. (1974), 
but the magnitude is much larger. We note that the DNS small-scale Reynolds 
number (Re,, see (lob) and table 2) is twice that of TFM for case l b ,  suggesting a 
progressive TFM overprediction of energy in the inertial range with increasing Re,. 
The TFM difference - in proceeding from case 1 (a)  (1 < k < 64) to  case 1 (b) 
(1 < k < 128) is consistent with a tendency for the theory to asymptote (as Re,+ a,) 
toward a k-3 range just prior to entering - with increasing k- the dissipation range. 
This may or may not be so for the DNS. Also for the latter, the presence of appreciable 
intermittency undoubtedly lowers the dissipation range, as in the earlier numerical 
studies of McWilliams & Chow (1979), and as predicted by Kraichnan (1967) and by 
Frisch & Morf (1981). 

Case 2 allows for an appreciable inverse-cascade range (kmin, k,) = (1, 20), where 
k,  = +(kl + k,).  In  addition, the forcing is non-white, which - strictly speaking - takes 
us outside the domain of the TFM. We must therefore give a prescription for an 
effective forcing of V ( k )  = f(l {Q (k, t )  1,). It is 

k 



234 J .  R. Herring and J .  C. Mc William 

1.3 

1.2 

1.1 

1 .O 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 I I I I I I I I I I I I I I I I I I I 1 1  I I I I I I I I I I I I I I I I I I 

E(t) 

P 

- - 
- 

FIGURE 3. Total energy E(t) for case 1 (a). P(k)  (figure 1) is obtained only from the stationary phase 
(20 < t < 40). 
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FIQURE 4. Total enstrophy V( t )  for cme 1 (a). 

t 

Here 7 is the timescale of the random forcing, as in table 1. For the parameter range 
of case 2, 77 4 1 and may be neglected. Equation (5) is obtained by solving, on a 
short timescale, 

(6) 

Equation (5) is correct if it is valid to assume that all but a negligible part of the 
energy is at scales much larger than k and that the effect of (u} (k, t )  on V may be 
replaced by a Gaussian large-scale field u,(t), whose timescale is fast compared with 
that of the forcing. 

DNS and TFM comparisons for stationary E(k)  in case 2 are given in figure 5. We 
notice an appreciable discrepancy in the inverse-cascade range, where the emergence 
of vortex structures in the simulation appears to arrest the inverse cascade. Despite 
this fact, the DNS and TFM have a strong intimation of a k-t range. Our results in 
this regard are in qualitative agreement with the recent calculations of Frisch & 
Sulem (1984). It is possible to estimate from figure 5 a Kolmogorov constant. Thus 

-- a{5) (&I - F(k,  t )  +u;k{5) (k, t )  - v(k)  {a (k, t ) .  
at 
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FIQURE 5. Energy spectrum for stationary phaae of case 2. 

KE Re, Re2 
- 12.1 6116 

CaSe E V S 
l(a) TFM 1.OOO 5.91 0.613 
l(a) DNS 0.936 4.90 0.767 -3 -3 11.0 4620 
l ( b )  TFM 0.500 3.31 1.06 - 9.09 11855 
l ( b )  DNS 0.512 3.11 0.776 -3 - 3  8.81 23300 
2 TFM 0.378 25.9 0.776 - - 76.4 595.4 
2 DNS 0.352 37.7 0.504 - 3  -9 52.7 680 

- 

- 

TABLE 2 

the maximum of kfE(k) / e  ( B  = the energy flux to large scales) is 4.8 for DNS and 
2.9 for TFM. However, we should stress that these estimates are far from asymptotic; 
recall Kraichnan's value of 6.5 from the TFM at Re = co for g = 1 (note that the k-f 
coefficient - gi in the TFM). They are consistent with those of Lilly (1969), - 4.3-6.2, 
but much smaller than those of Siggia & Aref (1981), - 14. In the enstrophy cascade 
and dissipation ranges the comparison is slightly more satisfactory, although the TFM 
is too shallow (as in case 1 a ) .  

Figures 6 and 7 show E(t) and V(t) for case 2 ,  during a significant portion of the 
stationary phase of the flow. Note the much attenuated noise level as compared to 
figures 3 and 4,  for case 1. In  part, this reduction is due to the non-Gaussian method 
of forcing (Markovian, with memory time 7-l) .  

Table 2 compares integral parameters E, V and S for cases 1 and 2. Here S is 

S(t)  = 
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In  the statistically steady state, we note that, according to (l) ,  S( t )  is equal to S’(t) ,  
where 

2 1” dk v (k )  k4E(k) 

where we assume that the contribution from the random forcing may be neglected, 
as may occur in practical cases for which there is forcing at  small k and dissipation 
at large k .  Even for decaying flows, we may expect a rough equality S ( t )  % s’(t),  since 
their main contribution comes from large k ,  where relaxational effects are strong. 

We note that S is a lowest-order measure (in the sense of cumulants) of non-Gaussian 
statistics of the flow field. Perhaps more significant and descriptive measures are the 
kurtosis of stream function and vorticity defined by 

These quantities measure directly the spatial intermittency of the fields @ and 6, but 
their dynamical significance is not immediate. The Gaussian value is 3. K9 and Ks 
are also listed in table 2 for cases 1 and 2 in the DNS ; they are not listed for the TFM 
since they are not computed by this theory. 

Finally, we define Reynolds numbers suitable for the total viscosity and the 
hyperviscosity component in (2) by 

E( t )  Vi 

1; dk v,k4 E(k)  ’ 
Re, = 

E( t )  Vi 
Re, = P r n  

J -- dk v,k4 E(k)  
0 

Here V is the enstrophy, Re, is a large-scale Reynolds number, while Re, is sensitive 
to the small scales. Values for Re, and Re, are also listed in table 2. We noted above 
that the TFM closure does not make predictions for the K’s. However, a derivation 
of TFM via perturbation theory (Kraichnan 1971) is clearly better justified for flows 
whose statistics are near-Gaussian. The agreement between DNS and TFM for the 
second-order moments listed in table 2 is typical of the agreement for earlier 
lower-resolution calculations (Herring et al. 1974). The agreement between S(DNS) 
and S(TFM) for case 2 is somewhat surprising. Also, note that our microscale 
Reynolds number Re, is much larger - for both DNS and TFM - than the large- 
scale Re,. 

Let us now examine the spin-down run, case 3, where F = vo = 0. A complete 
descriptive account of this flow - including the emergence of isolated vortices and 
their agglutination - is to be found in McWilliams (1984). We here focus only on those 
aspects of the flow predicted by the closure. Figure 8 presents a comparison of DNS 
and TFM predictions for the energy, enstrophy, skewness (see (7)) and effective 
Reynolds number Re (see ( 1 0 ~ ) )  (note that Re, = Re, for this case). In estimating the 
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PIQURE 6. Total energy E(t) for case 2. Spectrum for case 2 is obtained as time average over 
(80 < t d 160). 
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FIGURE 7. Total enstrophy V ( t )  for case 2. 

skewness we use (7b)  instead of  (7a ) ,  since the latter is not conveniently available 
from the DNS run. As noted earlier, in equilibrium, these are equal. In  the present 
TFM decay solution the former exceeds the latter by about 20 %. 

Generally, for case 3 the TFM gives a poor forecast of these quantities. A close 
examination shows that with the exception of S(t) - whose trend is poor even at  
small t -  the TFM values are accurate fort  < 2-3, and rapidly deteriorate as t increases 
beyond t = 5. This is borne out in more detail on the spectral plots for E(k , t ) ,  
presented in figures S ( a . 4 ) .  Beyond t = 10 the TFM E(k,  t )  tends rapidly toward a 
singular distribution, with virtually all energy in the largest-available scale (i.e. 
k = 1). For the TFM the (1 < k < 2) range of wavenumbers develops a negative eddy 
viscositysfor t > 5, feeding energy into the lowest-available mode (k = l ) ,  causing it 
to grow exponentially at the expense of all other modes at  least on the timescale 
relevant to the present discussion. (By eddy viscosity we mean here the term 
proportional to E(k,  t )  in the TFM’s evaluation of the energy-transfer function; there 
is no empirical constant needed for its evaluation.) For t < 5 the TFM eddy viscosity 
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FIQURE 8. (a) Total energy 3 ( t )  and effective Reynolds number Re@) for decaying turbulence, case 3. 
Ordinate for Re(t) is a t  the right. For TFM, E(t)  is a dashed line and R(t)  is a solid line. For DNS, 
E(t)  is represented by open circles and Re@) open triangles. (b) Total enstrophy V ( t )  and skewness 
s ' ( t )  (see ( 7 b ) )  for case 3 as function of time. Ordinate for s ' ( t )  is at  right. For TFM, V( t )  is a dashed 
line, and s'(t) solid. For DNS, V ( t )  is a solid line, and s'(t) open triangles. The unit of time 
corresponds to 0.728L/u, where L is the integral scale and u the r.m.s. velocity at  t = 0. 

is positive for all k. Furthermore, the E(k,  t) computed on a continuous wavenumber 
span (0 < k < 128) is virtually identical with that of the present run for t < 10; 
significant differences do occur for t > 10. The above system has no negative eddy 
viscosity. We have no means of assessing the value of the eddy viscosity concept for 
the DNS. We should note, however, that in the present context Kraichnan's (1975) 
demonstration that the TFM's eddy viscosity is negative is valid only if there exists 
a low-wavenumber cutoff, and if in addition wavenumber lattice-sums are replaced 
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FIQURE 9. Energy spectrum E(k,  t )  according to TFM (smooth curve) and 
DNS (histogram) selected values oft: (a) 0 ;  (b )  2;  (c) 5 ;  ( d )  10. 

by approximating integrals. These considerations suggest that fort < 10 wavenumber 
discretization errors are small; discrepancies between TFM and DNS are thus a result 
of the TFM’s erroneous dynamics. Beyond t = 10 we are not certain how to apportion 
the TFM-DNS difference between dynamical error and low-k discretization error. 

Excepting the range 1 < k < 2 - where the lack of many available wavenumbers, 
and hence the large statistical scatter, in the DNS precludes any certain conclusion - 
the case 3 discrepancy may be summarized as follows: the TFM overpredicts the 
amount of energy transferred to smaller k, yielding an excess of E ( k )  in the DNS at 
the k-values approximately corresponding to the coherent structures. (One must be 
cautious in assigning the vortices to a particular k-range; their partitioning in E(k)  
is based not only on their range of sizes but also on their range of separations.) The 
extent of discrepancy in E(k) increases in time. The time for the development of 
strong DNS-TFM difference seems to be the same for the development of strong 
departure of Kr from Gaussianity. 

Figure 10 shows the DNS vorticity field for case 3 at t = 10. Note the intense 
isolated vortices, separated by regions of relative quietude. We see here ‘collisional ’ 
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FIGURE 10. The vorticity field in physical space for case 3 at t = 10. After McWilliams (1984). 
Positive contours are solid, negative are dashed, and the contour interval is 5. 

events in which like-signed vortex elements merge, extruding armlike structures, 
which wrap around. Mergers both generate larger vortices and dissipate enstrophy . 
Eventually the wraparounds heal (by dissipative axisymmetrization), leaving 
isolated circular vortex elements. 

Concerning the large DNS-TFM discrepancy found here, three points may be made. 
First, it  may be argued that the strong departure from Gaussianity may be associated 
with the use of a hyperviscosity (see e.g. (2)). Notice in this connection that the effect 
of the ‘dissipation’ operator (2) - acting alone - does not imply a monotonically 
decreasing kurtosis, as would be the case for Newtonian or Rayleigh dissipation. We 
have checked this point by rerunning both the DNS and TFM for case 3, but with 
a standard Newtonian viscosity. The results were virtually the same as with (2) : the 
kurtosis of the DN8 similarly increases, with the associated development of coherent 
structures; and the disagreement with the TFM is quite similar. We do not produce 
the graphical comparison here, for brevity. 

Secondly, with regard to other theoretical approaches, it is of course possible that 
a more elaborate statistical closure - such as the Lagrangian-history closure 
(Kraichnan 1965) - will produce more satisfying results. However, other comparisons 
(Herring & Kraichnan 1979) of these methods in two dimensions indicated an 
indifferent improvement over the TFM - at least for short times. The velocity-based 
Lagrangian theory gave an energy and enstrophy transfer larger than the TFM, and 
hence we would expect its errors for the present study to be larger. The strain-based 
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Lagrangian-history theory did yield a smaller energy and enstrophy flux. This would 
suggest a modest improvement for the present study, but the agreement at smaller 
Reynolds number is not as satisfactory as for the TFM. In general, however, we would 
not expect a major change in the discrepancy between DN8 and these other closure 
theories. Further, the agreement (case 1 )  and discrepancies (cases 2 and 3) are 
consistent with the geometry and physics of the flow : large TFM errors go with large 
Ks, and vice versa. 

Thirdly, we have found that the TFM may be brought much closer into coincidence 
with the DNS by allowing the pressure-scrambling efficiency constant ga (here = 0.60) 
to increase as a function of Reynolds number. For example, we may take the excess 
of g2 above its low-Re value (0.60) to be proportional to the excess of vorticity kurtosis 
above its Gaussian value of 3. This would-in part-simulate the fact that the 
coherent structures, which progressively dominate with increasing Re, arrest the 
transfer to large scales. We recall in this connection that the TFM’s estimate for the 
duration of the strain process that accounts for the energy and enstrophy transfer 
is proportional to g2 : a small strain time is indicated by the fact that the regions of 
high strain occupy progressively smaller regions of space as Re increases. We mention 
this point here simply to reinforce the idea that the TFM disparity with respect to 
the DNS is consistent with the development of intermittent behaviour in the latter, 
and the inability of the former to represent strongly non-Gaussian behaviour 
adequately. 

4. Prospects and concluding remarks 
Our conclusions regarding the applicability of closures are somewhat narrowly 

focused in that we are unable to say quantitatively how much disruption of the 
tendency to form isolated vortices is needed to make the TFM accurate. If the validity 
of the closure is to be judged by the near-normality of the vorticity kurtosis, then 
it is of interest to observe that the presence of sufficient beta-effect or random 
topography suffices to limit it to near-Gaussian values (Holloway 1984 ; McWilliams 
1984a, 1984b). This is true even in the absence of random forcing. 

The comparisons of DNS with closures presented here may be of value in giving 
a quantitative characterization of the discrepancy between a non-Gaussian theory 
and numerical simulations which are, in varying degrees, non-Gaussian and hence 
intermittent. The latter attribute appears in the DNS in two (perhaps independent) 
guises : (1) the inertial-range intermittency (associated with the large-scale coherent 
structures) and (2 )  the dissipation-range intermittency, whose physics has been 
described by Kraichnan (1967) and in considerably more detail by Frisch BE Morf 
(1981). The dissipation-range intermittency is most manifest here in case 1 ( b ) ,  
although its numerical significance in reducing E(k)  below the TFM level is obscured 
by the arbitrary choice of g in the TFM. (The choice g = 1 would decrease the TFM 
spectrum in the dissipation range by about 20 yo .) 

One interesting aspect of the DNS is that, in all cases investigated here, the value 
of K$ remained nearly Gaussian. This suggests the possibility that closure could be 
useful in predicting large-scale phenomena such as eddy transport. which depend 
sensitively only on the large scales where +-variance is centred. This may be so, but 
the flow at very large scales does depend on the smaller - isolated-vortex range - scales, 
particularly when the great majority of vorticity in the flow resides in the coherent 
vortices. Hence a closure calculation that ignored entirely the latter range would be 
wrong. 
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The DNS calculations reported here suggest a flow comprised at times large 
compared with the time of maximum-enstrophy dissipation of highly organized, 
isolated vortices, which cascade to dissipation only on the occasion of rare close 
encounters (which often lead to some degree of merger). The random elements are 
the vortex spacing and time of encounters. This differs markedly from the more 
familiar picture of chaotic, persistently dissipative turbulent flow. 

The National Center for Atmospheric Research is sponsored by the National 
Science Foundation. 
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